Functional adhesive tapes for local anodizing of aluminum

Martijn Verhagen, Brussels 14-04-2015

Rene Magritte, Brussels, Belgium 1948 Source wikiart.org

Outline

- Anodizing
- Project introduction
- Work package: Adhesive development
- Work package: Anodizing tests
- Work package: Application tests
- Conclusion and next steps
- Acknowledgements

Anodizing

Definition: Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.*

Anodizing

Anodizing improves the corrosion protection of metals as well as improving adhesion of paints and adhesives

Methods of anodizing:

- Bath process
- Non-bath processes (Brush, PAC)

Project idea

Bath free anodizing with a pressure sensitive tape

Advantages:

- Tailored to the surface size and geometry
- Time saving
- Limited usage of chemicals
- Easy and safe handling
- Residue free surface afterwards

Project break down

Work packages:

- 1. Definition phase
- 2. Adhesive development
- 3. Tape construction
- 4. Anodizing process
- 5. Application tests

Work package: Adhesive Development, requirements for the adhesive

Adhesive bonding technology

- Adhesion/Cohesion
- Residue-less removal
- Tackiness (self-sticking)
- Shelf life
- Broad application window (temperature & humidity)

Electrochemistry

- Electric conductivity
- Chemical stability during anodizing
- Structure of anodic oxide
- Rate of anodic oxide formation
- Water content

- Target: Water-based system
 - Suitable for PAA process (phosphoric acid anodisation)

Work package: Adhesive development

- Commercial available adhesives
- Identified only 1 pressure sensitive adhesive that fit the pH requirement
 - Experimental product
 - pH: 1,5 2,5
- Adhesive is compatible with phosphoric acid
- Adhesive is plasticized by the acid
- No clean removal from substrates
- Formulating with other components does not improve the performance

Work package: Adhesive development

Self development of the adhesive

• 4 component types

Phosphoric acid

Binder (water-soluble polymer) Softener ÓН ÓН ÓН Poly(ethylene glycole) PEG Lactic acid MS Poly(vinyl alcohol) PVAL Poly(acrylic acid) PAA ÓН Glycerol GLY Propylene glycol PG Poly(vinyl methyl ether) PVME Polyvinylpyrrolidone PVP Electrolyte for anodising process Additives (solids) Fumed silica Adjustment of viscosity Π_3

Material	Function
PVAL	Polymeric matrix
PAA	Stability of the filmPossibility to cross linkComplex formation
PVP	Stability of the filmWater binder
PVME	Tackifier
Lactid Acid	Tackifier
Glycerin	Water binder
Fumed Silica	 Viscosity adjustment Improvement of the cohesion

Work package: Adhesive Development, requirements for the adhesive

Adhesive bonding technology

- Adhesion/Cohesion
- Residue-less removal
- Tackiness (self-sticking)
- Shelf life
- Broad application window (temperature & humidity)

Electrochemistry

- Electric conductivity
- Chemical stability during anodizing
- Structure of anodic oxide
- Rate of anodic oxide formation
- Water content

- Target: Water-based system
 - Suitable for PAA process (phosphoric acid anodisation)

Work package: Adhesive development

Coatweight wet	2200 g/m2
Coatweight dry	1300 g/m2
Peel force (AFERA 5001)	2,75 N/25mm
Failure mode	Clean Peel
Electrical conductivity	1,2 mS/cm
Water content	15%

Adhesive tape on lab scale

- Flexible set-up
 - Easy application
- High application weight (≈ 1500 g m⁻²)
- No separating fleece
- Storage in aluminum pouch
 - Constant water content

Anodizing parameters

- Constant current (DC) anodizing
 - Starting point: bath anodizing
 - Resistance similar to bath treatment
 - Increased (specific) resistivity
 - Decreased distance anode/cathode
 - Current density ≈15% compared to typical bath anodizing
- Pulsed potential anodizing
 - Improved mass transport and heat transport expected
 - Practical tests not yet successful

Evaluation of surface morphology

- Thickness of oxide and pore surface smaller for tape anodizing in comparison to bath anodizing
- Increasing humidity increases the oxide layer thickness for both methods
- Higher current increases the oxide layer thickness for both methods
- Longer exposure time increases the oxide layer thickness for both methods

Work package: Application testing

Lap shear: Bonding of aluminium test panels with a PUR adhesive

Substrates: AA2024 (clad), adhesive: Macroplast UK8303/UK5400 (Henkel), curing: 7 d @ RT

Pfera

Work package: Application testing

- Pickled only: Extensive paint delamination
- Anodizing tape: Comparable to bath treatment

Pickling: TSNC; bath anodisation: H₃PO₄/H₂SO₄; anodisation tape: 33wt% H₃PO₄, 18 V, 23 min; Paint: Chromate-free primer + topcoat, AA2024 clad, 1000 h

Conclusion

- Anodizing with a tape is possible
- Similar conditions (voltage, time) to bath anodizing can be used
- Although differences in oxide layer in comparison to bath anodizing, the oxide layer is suitable for painting and adhesion

Next steps

- Further optimization of tape construction
- Further optimization of anodizing process
- Identification of pilot applications
- Transfer from lab to industrial production process, by means of a new project or secondary partners

Acknowledgements

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Thank you very much for your attention!

